

## Metabolomics and metabolite identification – where are we now and the route ahead?

### Dr Warwick (Rick) Dunn

School of Biomedicine and Centre for Advanced Discovery & Experimental Therapeutics (CADET), Central Manchester NHS Foundation Trust, Manchester Academic Health Sciences Centre and University of Manchester, UK.

warwick.dunn@manchester.ac.uk http://www.manchester.ac.uk/research/warwick.dunn/ http://www.manchesterbrc.org/OurFacilities/CADET.php









### A tutorial – my views

- Introduce our abilities and common difficulties/ limitations of metabolite identification in complex metabolomic samples
  - describe common workflows for GC-MS and UPLC-MS
- Describe the reporting standards for metabolite identification
- Discuss what innovative tools are required or are being developed



### MANCHESTER 1824

## Component characterisation of simple solutions

- Relatively easy for analytical chemists to characterise a single component solution!
- Many tools available for characterisation of unknowns
  - mass spectrometry (MS)
  - nuclear magnetic resonance (NMR) spectroscopy
  - ultraviolet spectroscopy (UV)
  - infrared spectroscopy (IR)
  - elemental analysis
- Many of these are not appropriate for complex multi-component solutions
  - metabolomic samples are very complex (contain 100-1000s of metabolites)
  - mass spectrometry and NMR are two tools commonly applied in the analysis of complex metabolomic samples









## Untargeted vs. (semi-)targeted metabolomic studies

### METABOLIC PROFILING or UNTARGETED ANALYSIS



- (semi)-quantitative (global) detection of a wide range of metabolites
- Orbitrap, TOF, Q-TOF, IT, Q, FTICR
- data acquisition without *a priori* knowledge of biologically interesting metabolites
- metabolite identification required post data acquisition

### TARGETED OR SEMI-TARGETED ANALYSIS



- quantification of a smaller number of (related) metabolites for
  - targeted = generally less than 20
  - semi-targeted = low 100s
- 000
- metabolite identity already known
  - no further metabolite identification required

This seminar discusses metabolite identification in data acquired applying metabolic profiling strategies (i.e. complex samples containing 100-1000s of metabolites)



# Metabolite identification – A BOTTLENECK IN METABOLOMICS

For metabolomics to be successful it is essential to derive biological knowledge from analytical data - a view emphasised by a recent Metabolomics ASMS Workshop Survey 2009 which found that the biggest bottlenecks in metabolomics were thought to be identification of metabolites (35%) and assignment of biological interest (22%).

http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics-Survey-2009

### Why is metabolite identification a bottleneck?

- Tools available for identification of a limited number of metabolites in a semi-automated process (traditional analytical chemistry)
  - these are being applied for identification of 100-1000s of metabolites
  - limited number of these tools which have been developed and experimentally validated for highthroughput metabolite identification of all metabolites
- Metabolomes and raw data are complex
- 7800+ metabolites in human body (not including gut microflora –derived, drug-derived and many lipids)
- Qualitative description of all metabolomes is not complete (and not electronically available)
- Different physicochemical properties (diversity is greater than proteome for example)







## Mass spectrometers provide many advantages for metabolite identification in metabolomics

- Sensitive detection (sub-micromoles.L<sup>-1</sup> to millimoles.L<sup>-1</sup>)
  - detection of 100-1000s of metabolic features/metabolites
- **High mass resolution** (5000 to >200 000+ FWHM)
  - ability to separate features of similar but not identical monoisotopic mass
- High mass accuracy(< 5ppm)</li>
  - ability to accurately determine the mass of detected metabolic features
  - molecular formula determination
- Gas phase ion fragmentation
  - GC-MS using EI sources (or CI or QQQ)
  - LC-MS using QQQ, Q-TOF or LIT for MS/MS
  - structural determination
- Isotope patterns and relative isotope abundance (RIA)
- New developments in instruments and computational tools



### Technological advances during the last decade!



Typically we detect 1.5 to 3 times more mass peaks in direct infusion experiments when applying a mass resolution of 100 000 compared to 7500



### Levels of metabolite identification

- Sumner et al. Proposed minimum reporting standards for chemical analysis, Metabolomics, 2007, 3(3), 211-221
- Currently, four levels of metabolite identifications can be reported
- Not defining how to perform metabolite identification but defining how to report it

| Level | Confidence of Identity                | Level of Evidence                                                                                                                                              |
|-------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Confidently identified compounds.     | Comparison of two or more orthogonal properties with an authentic chemical standard analysed under identical analytical conditions.                            |
| 2     | Putatively annotated compounds        | Based upon physicochemical properties and/or spectral similarity with public/commercial spectral libraries, without reference to authentic chemical standards. |
| 3     | Putatively annotated compound classes | Based upon characteristic physicochemical properties of a chemical class of compounds, or by spectral similarity to known compounds of a chemical class.       |
| 4     | Unknown compounds                     | Although unidentified and unclassified, these metabolites can still be differentiated and quantified based upon spectral data.                                 |



### Gas Chromatography-Mass Spectrometry (GC-MS)

#### **IONISATION SOURCES PROVIDE:**

• **ELECTRON IMPACT** - PROVIDES REPRODUCIBLE GAS-PHASE FRAGMENTATION FOR STRUCTURE ELUCIDATION

• CHEMICAL IONISATION - NO FRAGMENTATION, ACCURATE MASS MEASUREMENT OF MOLECULAR ION

### MASS SPECTROMETRY PROVIDES:

- HIGH MASS RESOLUTION
- HIGH MASS ACCURACY (SOME NOT ALL INSTRUMENTS),
- HIGH SCAN SPEEDS /
  ACQUISITION RATES TO
  ACCURATELY DEFINE
  NARROW CHROMATOGRAPHIC
  PEAKS
  - HIGH SENSITIVITY



### GAS CHROMATOGRAPHY PROVIDES:

- REPRODUCIBLE
- HIGH RESOLUTION (PEAK WIDTHS OF A FEW SECONDS),
- RETENTION INDICES FOR METHOD AND LIBRARY TRANSFERABILITY



### **Retention indices**



Applies a series of homologous compounds e.g. n-alkanes e.g. fatty acid methyl esters

- Normalisation of retention time range
- Minimises errors associated with drift in retention time
- Can be applied across different GC columns and instruments (method and mass spectral library transferability)

### Mass spectral libraries and library matching

- Mass spectral libraries
  - constructed with authentic chemical standards
  - multiple libraries available, none are comprehensive
  - we apply The Manchester Metabolomics Database (MMD) library
- Comparing the mass spectrum of an authentic chemical standard against the mass spectrum of an unknown metabolite
  - Compares and scores depending on number of matched ions and relative intensity of those ions
- Provides a confidence score on match (out of 1000 or as a %)
- Difficulty in trimethylsilyl spectra as m/z 73 and 147 are common in most TMS-metabolites at high intensity and so matching can be compromised
  - differences can be based on a limited number of high m/z ions with a low response



### Problems to consider

- Metabolites of similar chemical structures have a similar chemical structure and may have similar retention index and mass spectrum
- Targeted separation methods required
- Report as X and/or Y





Erythritol 922 (RI=1477) AND/OR Threitol 965 (RI=1474)



### Mammalian cell footprint sample



# Electrospray Ionisation (ESI): DIMS, LC-MS, UPLC-MS and CE-MS

### **UPLC/UHPLC PROVIDES:**

- REPRODUCIBLILITY
- HIGH RESOLUTION (PEAK WIDTHS OF A FEW SECONDS),
- NO RETENTION INDICES FOR METHOD AND LIBRARY TRANSFERS



### MASS SPECTROMETRY PROVIDES:

- HIGH MASS RESOLUTION
- HIGH MASS ACCURACY (SOME NOT ALL INSTRUMENTS),
- HIGH SCAN SPEEDS / ACQUISITION RATES FOR TO ACCURATELY DEFINE NARROW CHROMATOGRAPHIC PEAKS
- HIGH SENSITIVITY
- •MS/MS OR MS<sup>n</sup>
  CAPABILITIES FOR
  MOLECULAR ION
  FRAGMENTATION (ALL ION
  OR SELECTED ION)

### **IONISATION SOURCES PROVIDE:**

- ELECTROSPRAY OR APCI
- REPRODUCIBLE
- MINIMAL/NO ION FRAGMENTATION
- COMPLEX ADDUCT FORMATION (LIQUID AND GAS-PHASE



### Routine workflow applied

- Accurate m/z data acquisition
  - 1. Apply data related to ion type
- Molecular formula determination
  - 1. Applications of rules to filter (e.g. relative isotope abundances)
  - 2. Comparison of MF to metabolite databases
- Putative metabolite identification
  - MS/MS or MS<sup>n</sup> fragmentation
- experimental and authentic standard / in-silico
- comparison to mass spectral libraries

de novo structural elucidation

- Reduction of number of putative hits from accurate m/z data
  - Authentic standard purchase or synthesis and comparative analysis



### The complexity of ESI data - tyrosine

17 IONS OF DIFFERENT MASS AND SAME RETENTION TIME CREATED FROM A SINGLE METABOLITE – NEED TO DEFINE THE ION TYPE FOR IDENTIFICATION OR HIGH PROBABILITY OF FALSE POSITIVE IDENTIFICATION





# Accurate measurement of *m/z* as the first process applied

- However, high chance of false positives if type of ion is not determined before conversion to molecular formula
  - see Brown M, Dunn W.B., et al. Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. *The Analyst* 2009, 134, 1322-1332.
  - determine ion type first using accurate mass differences, RT and correlation analysis

### **BIOINFORMATICS**

### ORIGINAL PAPER

Vol. 27 no. 8 2011, pages 1108-1112 doi:10.1093/bioinformatics/btr079

Systems biology

Advance Access publication February 16, 2011

### Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets

Marie Brown<sup>1</sup>, David C. Wedge<sup>2</sup>, Royston Goodacre<sup>2,3</sup>, Douglas B. Kell<sup>2</sup>, Philip N. Baker<sup>4</sup>, Louise C. Kenny<sup>5</sup>, Mamas A. Mamas<sup>1,6</sup>, Ludwig Neyses<sup>1,6</sup> and Warwick B. Dunn<sup>1,2,3,7,\*</sup>

<sup>1</sup>School of Biomedicine, The University of Manchester, Manchester M13 9PT, <sup>2</sup>School of Chemistry, <sup>3</sup>Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, UK, <sup>4</sup>Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, 2J2.01 WMC, Edmonton AB T6G 2R7, Canada, <sup>5</sup>The Anu Research Centre, Department of Obstetrics and Gynaecology, University College Cork, Cork University Maternity Hospital, Cork, Ireland, <sup>6</sup>Manchester Heart Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Royal Infirmary and <sup>7</sup>Centre for Advanced Discovery and Experimental Therapeutics, York Place (off Oxford Road), Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK

Associate Editor: John Quackenbush



### **PUTMEDID-LCMS**

- We have developed an *in-silico* suite of workflows for metabolite identification
  - automated and high-throughput
  - for holistic identification of all features
  - easy to use and idiot-proof (i.e. I can use it!!)
  - fill a gap in currently available tools
  - apply information on ion type to reduce number of false positives
- Three separate Taverna workflows have been developed
  - flexibility built in
  - converts accurate mass data to molecular formula(e) and potential metabolite
  - applies reference files which can be developed by the user to be instrument/organism specific
  - developed for Windows not Macs

ANNOTATION OF **ALL FEATURES BASED** ON ACCURATE MASS DIFFERENCES, **RETENTION TIME AND CORRELATION ANALYSIS** MATCHING OF ACCURATE MASS TO MOLECULAR FORMULA(E) IN REFERENCE FILE MATCHING OF MOLECULAR FORMULA(E) TO METABOLITE(S) IN A REFERENCE FILE (E.G. MMD)



### MS/MS and $MS^n$

• Gas-phase fragmentation through ion activation in a vacuum



- Specific to a single mass/metabolite OR all-ion fragmentation
- Different ion activation mechanisms available
  - Collision Induced Dissociation (CID) in a Q-TOF or QQQ (MS/MS)
  - CID in an ion trap/linear ion trap (MS $^n$  whewre n can be greater than 2)
  - HCD in Orbitrap instruments (MS/MS)
- Advantages and limitations (e.g. IT/LIT (1/3<sup>rd</sup> rule))
- Provide structural information
- Apply to reduce number of potential molecular formula
  - like putting a jigsaw puzzle together



## Complementary ion activation mechanisms are advisable – CID vs HCD





CID in a linear ion trap

**HCD** 

- CID and HCD can (but not always) provide complementary mass spectral data
- Comparable with CID and ECD in proteomics

Thanks to Dr Graham Mullard in CADET/School of Biomedicine for providing the data



## MS<sup>n</sup> – mass spectral trees and increased specificity



Parent to daughter to grand-daughter to great grand-daughter



**Courtesy of ThermoFisher Scientific** 

### Problems to consider

- Not all metabolites present in a diverse range of metabolomes are known and electronically tagged
  - can only apply comparative data if metabolites are present in these databases/ libraries
- Mass spectral libraries
  - not all known metabolites are commercially available and so are present in mass spectral libraries
  - LC-MS/MS libraries are significantly less developed than for GC-MS
  - LC-MS/MS libraries are they transferable? RT and mass spectra
- Data are complex
  - one metabolite = multiple features
  - false positives
- No automated workflows employing multiple strategies
  - alot of manual work still involved!!!!



### In-silico/computational tools in development

- Use data from 'knowns' or computational algorithms to predict 'unknowns'
- *In-silico* fragmentation for LC-MS
  - MassFrontier (http://www.highchem.com/massfrontier/mass-frontier.html)
- Substructure prediction for GC-MS
  - Hummel J, et al., Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics. 2010, 6(2), 322-333.
- Retention time/index prediction
  - Kumari S, et al., Applying in-silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC-TOF mass spectrometry. Anal Chem. 2011, 83(15):5895-902
- Ionisation behaviour rules for ESI-MS
  - Draper J et al. Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted **ionisation** behaviour 'rules'. BMC Bioinformatics. 2009, 10:227.
- Application of prior biological knowledge (biological samples are not random collections of chemicals but chemicals are linked by enzymatic reactions)
  - Weber RJM et al. MI-Pack: Increased confidence of metabolite identification in mass spectra by integrating accurate masses and metabolic pathways. Chemometrics and Intelligent Laboratory Systems, 2010, 104, 75-82.
- Synthesis of novel metabolites
- In-vivo stable isotope labelling
- If all else fails.....isolation of metabolite and de novo structural elucidation



### Summary

- Metabolite identification is a highly complex process in metabolomics
- Mass spectrometry offers many tools for metabolite identification
  - accurate mass
  - MS/MS and MS<sup>n</sup>
  - retention time and retention index
  - mass spectral libraries
  - computational tools
- Limited automated and high-throughput INTEGRATED workflows available as of yet (especially for ESI-MS)
- Unable to identify all metabolites in a sample currently and we are a long way off
- Require a slow cataloguing of metabolites present in a diverse range of metabolomes across many research groups and their database integration
- We are currently on an important developmental journey which is essential for metabolomics to be successful