alhus t

" ' . ® > ' 3
N , e '
x : ."'*.‘. .‘.-\ ' : , :
el

Ini ar'lafe and
TVc r'la're data @ﬂﬂ]\/}j}g

—

-
-
-_

"“04

—
- -
—

Se? fhe scene
Talk about design and analysis -
Blomarker' or perturbation exper'; ment

Roy Goodacre
School .of Chemistry and el > i
University of Manchester ™ —




1400 L L L L F "_F L
1200 -
0y, Lot
%{ « bl
g
§1000~ NGB
o gb
2 | )
& 800~ 5
e K GE
o
G 600+ Ss ;T
s S
S
S
400+
ax

20 r r r r r r r
800 1000 1500 2000 2500 3000 3500 4000 450C

Caffiene
..... 8000,
6000 ses s,

4000

2000

somevvh ein 2D or 3D space i
" But |f one collects 100 variables..




|
A \i
\J 1’ 'n... L

-
FI g - T - ‘

l

|
il quJ ol

3 28

Wl
Identlfler ‘transcript / proteln,,w
Quan’fq?ﬁfdf‘ concentration or




Experimental design
Data collection

Databases of Metadata and Data

Data pre-\:rncessing

Data analysis

Data inferl'pr'e’mtinn




Is this a good experimental design?

@ Liver failure from plasma
€ Metabolome measured with GC-MS & LC-MS

Table 1. Demographic Information of the Healthy Group and
Liver Failure Patient Group Investigated?

healthy group patient group
(n=23) (n = 24)

Gender (male/female) 15/8 21/3
HBsAg Negative Positive
Age (year) 27.39 £+ 9.24 46.77 4+ 13.35
ALT (U/L) <40 172.63 £+ 147.49
TB («mol/L) <12 457.33 £ 135.48
PT (s) <14 26.06 4+ 15.14
MELD score / 24.68 £+ 8.38

@ Abbreviations: ALT, alanine aminotransferase; TB, total bilirubin; PT,
prothrombin time; MELD, model for end-stage liver disease. The value is
represented as the form of mean + SD.

Lawton, K.A. (2008) Pharmacogenomics 9, 383-397



Is this a good experimental design?

Childhood
Adult

acute lymphoblastic leukemia
acute myeloid leukemia

€ Affymetrix arrays with 6,817 probes

C-myh (U22376)
Proteasome 1ota (X59417)
MB-1 (U05259)

Cyclin D3 (M92287)
Myosin light chain (M31211)
RbAp4S (X74262)

SNF2 (D26156)

| HKrT-1(550223)

E2A (M31523)

Inducible protein (L47738)

| SNF2(U29175)

(Ca2+)-ATPase (Z69881)

SRPY (U20998)

MCM3 (D38073)

Deoxyhypusine synthase (U26266)

Op 18 (M31303)

| Rabaptin-5 (Y08612)
Heterochromatin protein p25 (U35451)
1L-7 receptor (M29696)

1 Adenosine deaminase (M13792)

3 25 2 -15 4
low Normalized Expression high

05 0 05 1 15 2 25 3

3 25 -2 15 A
low Normalized Expression

05 0 05 1

Golub et al. (1999) Science 286, 531-537

Fumarylacetoacetate (M55150)
Zyxin (X95733)

LTC4 synthase (US0136)

LYN (M16038)

HoxA9 (U82759)

Le,
Cystatin C (M27891)
Proteoglycan 1 (X17042)

¢ ) sor (YOO787)
Dynein light chain (U32944) Azurocidin (M96326)
Topoisomerase 11 B (Z15115) p62 (U46751)

IRF2 (X15949) CyP3 (MR0254)
TFIER (X63469) MCLI (L08246)
Acyl-Coenzyme A dehydrogenase (M91432) ATPase (M62762)

1L-8 (M28130)

| Cathepsin D (M63138)

25 38

high

Lectin (M57710)
MAD-3 (M69043)
CDI e (MB1695)
Ebp72 (X85116)
Lysozyme (M19045)
Properdin (M83652)
Catalase (X04085)



Sample size bias
€ Should try to have even cohort sizes

€ Using a large sample size does not directly
address bias, although it can reduce statistical
uncertainty by providing a smaller confidence
interval around a result.



Is this a good experimental design?

€ Pre-eclampsia: Pregnancy-induced hypertension
€ Metabolomics: GC-MS of serum

Demographic data for patients from whom plasma samples were taken

Measuring BP?

Normal outcome

n=487

Age

Parity

BMI (weight/height”)
Max (S) BP (mm Hg)
Max (D) BP (mm Hg)
Delivery gestation
(weeks + days)

Birth weight (g)

IBR (centile)

30 (19-43)

0 (0-2)

25 (19-46)
122 (96-147)
80 (60-93)
40+4

(3443 to 42+
3420 (2380—-4420)

34 (10-99)

Median (range).

Pre-eclampsia vs normal ouicome.

*p<0.0001.

Preeclampsia Markers found did
not correlate with BP
31 (19-41) J—— |
0 (0-2) “[ oo
26 (18-46) 3
162 (138-220)* 1% %
110 (90-140)* ‘g .o
37+ 0% Mk and ’
5 o o
0) (26+3 to 41+ 1) 1.08% e .
2410 (590-4300)* L T
8 (0-99)* e ) )
A4

0
metabolite_427

Kenny L.C. et al. (2005) Metabolomics 1, 227-234



Ronald A. Fisher (1938)

"To call in the statistician after the @
experiment is done may be ho more than
asking him to perform a post-mortem
examination: he may be able to say what
the experiment died of"

* and this is why most claimed

research findings are false
*Broadhurst, D. & Kell, D.B. (2006) Metabolomics 2, 171-196



Statistician needed at onset

Initial state Subsequent state
(baseline) (outcome)

» Was randomisation
l A l successful: Check!

O

Selection of
participants

/ . . »Incase-control studies
Randomization .
only non-random thing
External : Internal ShOUId be What you
validity validity .
(generalizability) (chance, bias) are teStIng for

Nature Reviews | Cancer

Ransohoff, D.R. (2005) Nature Reviews Cancer 5, 142-149



All about Null hypothesis (/)

€ Given the test scores of two random samples of guilty people and
Innocent people, does one group differ from the other?

€ A possible null hypothesis is that the mean score for guilty is the
same as the mean innocent score. In other words H,: y; = U,

Null hypothesis (Hy) | Null hypothesis (H)
IS true Is false

Reject null hypothesis False positive True positive
[Type | error] [Correct outcome]
Fail to reject null hypothesis True negative False negative
[Correct outcome] [Type Il error]

€ Type | error can be thought of as “convicting an innocent person”
& Type Il error “letting a guilty person go free”



Data handling

Objects X-var | X-var | X-var | Metabolite | Conc
going down 1 2 3 Glucose 0.1
N diﬁerent Metabolite | Metabolite | Metabolite
orpeakl | orpeak2 | orpeak3 Indole 0.001
FrOWsS
Sample 1 Tryptophan 1.2
Ethanolamine 0.7
Sample 2...
Metabolite #88 0.9
- _J/
Y
Lgetabolite #167 | 0.05
Input data TETITOTITELTTTS




Unsupervised methods

€ Use X data only
& X data = transcript/protein/metabolite levels
% Inputs to some analysis method

€ Most common methods
& Principal components analysis (PCA)

% Clustering methods
&, Kohonen neural networks




Uncovering correlations in data

& Correlations between x variables are confusing.

&€ Need to examine the structure within data sets,
rather than using them blindly.

€ Finding such structure by hand can be
extremely difficult, even in relatively simple
cases.

— use projections



Who's there?

& Data — random
mess?

& On rotation of
the data ...

Maximum variance

138

188
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—-324

-180A

-158 I R R |
-158-18B -5 @A =@ 188 154

Next most variance



Projection of the data

X1, Xy ee Xiy o

w N

samples

variables

o X
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variance: t; >t, > ... >t

Py |

P2 '_

P; ':

loadings (p)
summarise variation in variables

Lo

scores (t)
summarise
variation in

samples

uncorrelated
orthogonal

scores = loadings x data

[ = PaXp + PXp * ..

PnXn

S pX L
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Principal components analysis

& Finds structure in such data sets.

€ An old method
U Karl Pearson (1901) — Hotelling (1933)

€ Rotate to uncover maximum correlations
@ First axis placed along the most natural variation

€ Second axis orthogonal to this to find 2"d highest
correlation, and so on

& Plot axes — spot major underlying structures
automatically



PC1 = 15t principal component
describes largest variance
goes through variable origin space
ti; = score for point j = distance
from projection of that point
onto PC1 from origin

PC2 = 2" principal component
describes 2" largest variance
goes through variable origin space
tj, = score for point |




Who's there?

& Data — random
mess?

& On rotation of
the data ...

€ Uncovered
where variance
and correlations
are

Maximumgyariance

138

188
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Next moé% variance
N
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& Data from 5036 airports

& For example

“DURANGO, CO
= Alirport information on 10 August, 2000
=Latitude: 37-12-11.442N (37.2031783)
=Longitude: 107-52-09.103W (-107.8691953)
=Elevation: 6684 ft. / 2037.3 m

-8000
4000 -10000 longitude

3000

latitude

-4000

-200


http://www.airnav.com/airport/00C

PCA loadings

Longitude

€ PC scores

Lt, = 91.65%
Gt, = 8.35%

Lt; = 0% - [E|evation

Latitude

. PCA removes ‘noise’



PCA scores plo’r

1000 . . .
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Principal component 2
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-4000 -3000 -2000 -1000 0 1000 2000

Princinal cnmnnnent 1



European employment data, 1979

€ 26 European countries

€9 variables for each

& agriculture, mining, manufacturing, power supplies,
construction, service industries, finance, social and
personal services, transport and communications

®PC1 and PC2
&account for 67.3% of total variance



Communist Mining

PCA \
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. PCA mines data
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Input data

Output data

7 N P e 0), 0
%..ll.l.lllllll Explanatory | [~ -1 %%
;.ll.llllllll. mathematical | - > 0 g%
o R g:!:i;i:;:l;:!: t:ansformanon ....................... ,é g.é
Predictive analyses E it =1 5|8
N N NN LSRN 1/°a
Discrete variables
Objects X-var | X-var | X-var | Y-var | Y-var
going down 1 2 3 1 2
in differe Nt Metabolite | Metabolite | Metabolite Lots of Diseased
orpeak 1l | orpeak2 | orpeak3 Metadata | or Healthy
FTOWS (Levels)
Species
Sample 1 Ao 0
M/E (control)
BMI
Sample 2... sampling 1
processing (diseased)
etc, etc...
— L J
Y Y



Supervised learning methods

& Use X and Y data

& X data are mRNA/protein/metabolite levels as Inputs
&Y data are targets as Outputs

€ Analysis can be:
& Univariate

O Multivariate
& Must be validated




Univariate testing methods

Compare means | Compare median | Multivariate
extension

One factor, 1 or 2 Student’s t-test Wilcoxon rank Hotelling’s t? test

groups and its variants sum test and its and its variants
variants

One factor, One-Way ANOVA Kruskal-Wallis MANOVA

multiple groups ANOVA

Two factors, Two-Way ANOVA  Friedman test N/A

multiple groups

Multiple factors, N-Way ANOVA N/A N/A

multiple groups

Tests comparing means known as parametric test, more powerful but lest adaptive.
Tests comparing medians known as non-parametric, less powerful but more adaptive.

Thanks to Dr Yun Xu



Extended to multivariate data

€ For each measurement perform a test.

€ Null hypothesis is that the mean metabolite
level for the diseased cohort is the same as the
mean for the healthy control group

Null hypothesis (Hy) | Null hypothesis (H)
IS true Is false

Reject null hypothesis False positive True positive
[Type | error] [Correct outcome]
Fail to reject null hypothesis True negative False negative

[Correct outcome] [Type Il error]
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Multivariate analysis methods

€ Most common methods
& (Fisher or PLS) discriminant analysis
& Partial least squares (PLS) regression

€ Outputs

& Scores plots

U Target outputs or ‘labels’ — Identification
@ Projection based

& Just like PCA but this time with respect to some
label (from the Y data)



Discriminant function analysis
(aka, canonical variates analysis)

€ Uses uncorrelated inputs a

priori information

€ Projection based on:
& Minimises within group
variance

%, Maximises between group
variance

€ Test by projection of

‘unknown’ samples

€ Statistical significance:
A O o

v2 confidence limits



Peat

\ 4
\ 4

\ 4

6 groups

Circles = 95%
v2 confidence
limits

AIrows
represent outlier
samples that
were from
upper horizon of
the peat depth
profile
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Harrison, B. et al.. (2006) Journal of the Institute of Brewing 112, 333-339.



Target Output for PLS
€ Usually binary encoded:

New sample

Known diseases

A B C identity
1 0 0 —> A
0 1 0 —> B
0 0.2 0.8 — C

Easy look up table




Target Output for PLS

€ Can be quantitative:

Level of disease; e.g., Gleason Grades

Patient | Grade Diagnosis
A 0 — No prostate cancer
o 1 — Well differentiated cells
.. less aggressive
C 3 — Moderately differentiated cells
D 5 — Undifferentiated cells
.. fast growing + aggressive




Supervised methods are powerful...

€ Learn from experience
€ Generalise from previous examples to new ones

& Perform pattern recognition on complex
multivariate data.

& Make errors

& usually because of badly chosen data
Y tanks from trees...

— Use validation



Validation uses data resampling

€ Resampling methods
& Training set and a Monitoring set

U Select subsets from the training data, while
keeping the training pairs together

€ External validation
% Do the experiment again with a different cohort

Goodacre R. et al. (2007) Metabolomics 3, 231-241



Resampling approaches

€ Leave-one-out validation (LOO)

U Single training pair (X-data and Y-data) left out
and rest used for training

& Repeat until all samples have been left out once

& K-fold validation

% Split data into slices:
= one slice monitors the model
= remainder used as the training set




Better still

€ Bootstrapping

% ‘On average’ 36.8% samples were used for testing
and 63.2% samples for training

& Do many times (say 1000)
% Do statistics on test data only

€ Permutation testing
& Null distribution using lots of permutation tests
& Use same data but answer (Y-data) is permuted



Biomarker Discovery: From lab to bedside

Increasing
sample
numbers
and
throughput

Conception (objectives, collaborations, design of experiment)



Data rich environment needs
statistical analyses

"Statistics are like bikinis.
What they reveal is suggestive,
but what they conceal is vital”

Aaron Levenstein

"All models are wrong,
but some are useful”

George E. P. Box




Biomarker Discovery: From lab to bedside

ﬂ""!

Increasing
sample
numbers
and
throughput

Conception (objectives, collaborations, design of experiment)



