Univariate and Multivariate data analysis

Set the scene Talk about design and analysis Biomarker or perturbation experiments Roy Goodacre School of Chemistry and MIB University of Manchester

Mega- & Multivariate data

A sample resides somewhere in 2D or 3D space But if one collects 100 variables… Need to visualise 100 D space! underlying theme of multivariate analysis (MVA) is thus *simplification* or *dimensionality* reduction 0 0 500 Chlorogenic acid 1500 0 2000 t t n GB U. N GB ^N L N K LN K k F F gbi $\mathbf{h}_{\mathsf{g}\mathsf{b}}$

2000

Caffiene

Data floods

Pairs:

Identifier: transcript / protein / metabolite Quant Info: concentration or ratio

ACKOUT

BL.

Defence against data floods

www.cis.nctu.edu.tw

Experimental design Data collection Databases of Metadata and Data Data pre-processing Data analysis Data interpretation

Is this a good experimental design?

- ◆ Liver failure from plasma
- ◆ Metabolome measured with GC-MS & LC-MS

Table 1. Demographic Information of the Healthy Group and Liver Failure Patient Group Investigated^a

	healthy group $(n = 23)$	patient group $(n = 24)$
Gender (male/female)	15/8	21/3
HBsAg	Negative	Positive
Age (year)	27.39 ± 9.24	46.77 ± 13.35
ALT (U/L)	~140	172.63 ± 147.49
$TB \ (umol/L)$	12	457.33 ± 135.48
PT(s)	14	26.06 ± 15.14
MELD score		24.68 ± 8.38

^a Abbreviations: ALT, alanine aminotransferase; TB, total bilirubin; PT, prothrombin time; MELD, model for end-stage liver disease. The value is represented as the form of mean \pm SD.

Lawton, K.A. (2008) *Pharmacogenomics* **9**, 383-397

Is this a good experimental design?

- 27) acute lymphoblastic leukemia
- (11) acute myeloid leukemia

Childhood

Adult

Affymetrix arrays with 6,817 probes

Golub *et al*. (1999) *Science* **286**, 531-537

Sample size bias

◆ Should try to have even cohort sizes

◆ Using a large sample size does not directly address bias, although it can reduce statistical uncertainty by providing a smaller confidence interval around a result.

Is this a good experimental design?

◆ Pre-eclampsia: Pregnancy-induced hypertension

Metabolomics: GC-MS of serum Measuring BP?

Demographic data for patients from whom plasma samples were taken

Median (range). Pre-eclampsia vs normal outcome.

 $*_p$ < 0.0001.

Markers found did not correlate with BP

Ronald A. Fisher (1938)

"To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of"

> *Broadhurst, D. & Kell, D.B. (2006) *Metabolomics* **2**, 171-196 * and this is why most claimed research findings are false

Statistician needed at onset

Was randomisation successful: Check!

In case-control studies only non-random thing should be what you are testing for

Nature Reviews | Cancer

Ransohoff, D.R. (2005) *Nature Reviews Cancer* **5**, 142-149

All about **Null hypothesis (H⁰)**

- Given the test scores of two random samples of guilty people and innocent people, does one group differ from the other?
- \blacklozenge A possible null hypothesis is that the mean score for guilty is the same as the mean innocent score. In other words $H_0: \mu_1 = \mu_2$

 Type I error can be thought of as "convicting an innocent person" Type II error "letting a guilty person go free"

Data handling

Unsupervised methods

◆ Use X data only

 $\&$ X data = transcript/protein/metabolite levels

 ψ Inputs to some analysis method

◆ Most common methods

- ψ Principal components analysis (PCA)
- **♦ Clustering methods**
- \mathfrak{B} Kohonen neural networks

Uncovering correlations in data

◆ Correlations between *x* variables are confusing. Need to examine the *structure* within data sets, rather than using them blindly. ◆ Finding such structure by hand can be extremely difficult, even in relatively simple

cases.

use projections

Who's there?

- \blacklozenge Data \rightarrow random mess?
- ◆ On rotation of the data …

Projection of the data

Principal components analysis

◆ Finds structure in such data sets.

- ◆ An old method
	- \rightarrow Karl Pearson (1901) \rightarrow Hotelling (1933)
- ◆ Rotate to uncover *maximum* correlations
- First axis placed along the most *natural variation*
- ◆ Second axis orthogonal to this to find 2nd highest correlation, and so on
- \blacklozenge Plot axes \rightarrow spot major underlying structures automatically

 $PC1 = 1$ st principal component describes largest variance goes through variable origin space t_{j1} = score for point j = distance from projection of that point onto PC1 from origin

 $PC2 = 2nd principal component$ describes 2nd largest variance goes through variable origin space t_{j2} = score for point j

Who's there?

- \rightarrow Data \rightarrow random mess?
- ◆ On rotation of the data …
- ◆ Uncovered where variance and correlations are

150 100 Next most variance Next most variance 50 $\boldsymbol{\Theta}$ -50 -100

Ø

50

100.

150

 -150

 $-150 - 100 - 50$

Maximu^pnCyariance

http://www.airnav.com/airport/0

\ **PCA removes 'noise'**

PCA scores plot

European employment data, 1979

◆26 European countries

◆9 variables for each

 $\mathbb Q$ agriculture, mining, manufacturing, power supplies, construction, service industries, finance, social and personal services, transport and communications

◆ PC1 and PC2

 \triangle account for 67.3% of total variance

Predictive analyses

Input data Output data

Supervised learning methods

◆ Use X and Y data

 $\&$ X data are mRNA/protein/metabolite levels as Inputs $\forall Y$ data are targets as Outputs

◆ Analysis can be:

W Univariate

 \mathfrak{B} Multivariate

Wust be validated

Univariate testing methods

Tests comparing means known as parametric test, more powerful but lest adaptive. Tests comparing medians known as non-parametric, less powerful but more adaptive.

Thanks to Dr Yun Xu

Extended to multivariate data

◆ For each measurement perform a test.

Null hypothesis is that the mean metabolite level for the diseased cohort is the same as the mean for the healthy control group

Broadhurst, D. & Kell, D.B. (2006) *Metabolomics* **2**, 171-196

Multivariate analysis methods

◆ Most common methods \mathfrak{S} (Fisher or PLS) discriminant analysis $\&$ **Partial least squares (PLS) regression**

◆ Outputs

 $\frac{1}{2}$ Scores plots

 \mathfrak{S} Target outputs or 'labels' \rightarrow Identification

◆ Projection based

 $\frac{1}{2}$ Just like PCA but this time with respect to some label (from the Y data)

Discriminant function analysis (aka, canonical variates analysis)

- Uses uncorrelated inputs *a priori* information
- ◆ Projection based on:
	- ψ Minimises within group variance
	- \mathfrak{B} Maximises between group variance
- ◆ Test by projection of

Peat

- 6 groups
- $Circles = 95%$ χ^2 confidence limits
- Arrows represent outlier samples that were from upper horizon of the peat depth profile

Harrison, B. *et al*.. (2006) *Journal of the Institute of Brewing* **112**, 333-339.

Target Output for PLS

◆ Usually binary encoded:

Known diseases

Easy look up table

Target Output for PLS

◆ Can be quantitative:

Level of disease; e.g., Gleason Grades

Supervised methods are powerful…

- ◆ Learn from experience
- ◆ Generalise from previous examples to new ones
- ◆ Perform pattern recognition on complex multivariate data.
- ◆ Make errors
	- \mathfrak{B} usually because of badly chosen data
	- \mathfrak{B} tanks from trees...

Use validation

Validation uses data resampling

◆ Resampling methods

- $\frac{1}{2}$ Training set and a Monitoring set
- $\frac{1}{2}$ Select subsets from the training data, while keeping the training pairs together

◆ External validation

 $\&$ Do the experiment again with a different cohort

Goodacre R. *et al*. (2007) *Metabolomics* **3**, 231-241

Resampling approaches

◆ Leave-one-out validation (LOO)

Single training pair (X-data and Y-data) left out and rest used for training

 $\&$ Repeat until all samples have been left out once

◆ K-fold validation

 $\frac{1}{2}$ Split data into slices:

- \Rightarrow one slice monitors the model
- \Rightarrow remainder used as the training set

Better still

◆ Bootstrapping

 $\%$ On average' 36.8% samples were used for testing and 63.2% samples for training

 $\&$ Do many times (say 1000)

 $\&$ Do statistics on test data only

◆ Permutation testing

 $\&$ Null distribution using lots of permutation tests ↓ Use same data but answer (Y-data) is permuted

Biomarker Discovery: From lab to bedside

 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ **Increasing** sample numbers and throughput **To the clinic**

Representative Cohort study (*n***=1000s) with analysis of candidates (LC-MS and/or assay)**

Set of candidate things to measure

Hypothesis validation (independent sample set 2)

Hypothesis generation study 1 (independent sample set 1)

Conception (objectives, collaborations, design of experiment)

Data rich environment needs statistical analyses

"Statistics are like bikinis. What they reveal is suggestive, but what they conceal is vital" Aaron Levenstein

"All models are wrong, but some are useful" George E. P. Box

Biomarker Discovery: From lab to bedside

Biological Understanding

To the clinic

Representative Cohort study (*n***=1000s) with analysis of candidates (LC-MS and/or assay)**

Set of candidate metabolites

Hypothesis validation (independent sample set 2)

Hypothesis generation study 1 (independent sample set 1)

Conception (objectives, collaborations, design of experiment)

Increasing sample numbers and throughput

 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$